
Documentation Areal-Weighted Reaggregation Tool

Z i e g l e r ••••••••••••••••••••••••• A W R D o c u m e n t a t i o n

D e s c r i p t i o n
The Areal-Weighted Reaggregation (AWR) tool is a custom Python script that allows ArcGIS
users to perform an areal-weighted aggregation using any two input polygon feature
classes. Users of the tool are required to input the following parameters:

F u n c t i o n a l i t y
What is areal-weighted reaggregation and how does it work? AWR is a geospatial technique
developed to take data that is aggregated according to the geometries of one areal
unit (i.e. county, state, Census block groups, protected areas) and reaggregate that data
based on the geometires of a different areal unit when these areal units are not nested. If the
areal units are nested, simply using the Dissolve tool will perform a more rapid analysis. The
technique, as performed by this script, involves the following steps:

• Workspace - the path telling the computer where you’re storing the files of interest. The script
will use this path to access the input polygon feature classes and store generated outputs.

• Data Feature Class - the feature class holding your data of interest. This is the file that contains
the aggregated data that you will be working to reaggregate. For example, if you have data
by Census block groups and you want to reaggregate these data by county boundaries, your
block groups feature class would be the input for this parameter.

• Areal Units Feature Class - the feature class holding your areal unit of interest. This is the file
that contains the areal units by which you are reaggregating. For example, if you have data
by Census block groups and you want to reaggregate these data by county boundaries, your
county boundaries feature class would be the input for this parameter.

• Dissolve Field - the field in your areal unit feature class that uniquely identifies each feature in
the feature class. Your data will be reaggregated (dissolved) based on this field. For example,
in your county boundaries feature class, there is likely a field (i.e. COUNTY_ID) that uniquely
identifies each county. This would be the input for this parameter.

• Intersect Feature Class - the intersect feature class created as part of the areal-weighted
reaggregation. This is one of two outputs generated by the tool and includes the result of an
intersect analysis between your data feature class and areal unit feature class. This feature class
isn’t imperative for analysis, but it does have additional applications beyond running an AWR.
For this parameter you provide a file name and output path, and the script will generate the
intersect feature class with that name.

• Statistics Field(s) - the field(s) that you want to reaggregate (SUM) in the output feature class.
These fields are the data of interest contained in your data feature class. For example, if I wanted
to aggregate the number of Black, White, Hispanic, and Asian people by county, I would select
fields “BLACK”, “WHITE”, “HISPANIC”, and “ASIAN” for this parameter. Note that this parameter
can be any numerical input.

• Output Feature Class - the output of your areal-weighted reaggregation. The output
feature class of our AWR will provide the statistics specified in the Statistics Field(s) parameter
reaggregated by the areal units specified in the Dissolve Field parameter. These statistics will
appear as new fields with a prefix “SUM_” and a suffix “_awr”.

(a) Create a new field in your Data Feature Class and populate this field with the area value of
each of the features in the feature class.

Z i e g l e r ••••••••••••••••••••••••• A W R D o c u m e n t a t i o n

S e t t i n g u p t h e t o o l i n A r c G I S
This AWR script runs using the ArcPy site package and is therefore only compatible with sys-
tems that are capable of importing ArcPy. Future development could be targeted towards
creating an open source alternative. To use the tool in your own analysis, follow these steps:

(a) Download <ArealWeightedReaggregation.py> from http://parkerziegler.com/senior-re-
search-programming-for-gis/, Post #3.

(b) Open up ArcGIS. From ArcCatalog, expand Toolboxes. Right click on MyToolboxes and
create create a new Toolbox (.tbx).

(c) Right click on your new toolbox. Navigate to Add > Script. This will pop open the script wizard.

(d) The first panel of the script wizard asks you to give the script a name, an alias, and a

description. DO NOT use spaces in the script name – this is the actual path name that ArcGIS will
use to find and run your script. Spaces and other special characters are ok to use in your script
alias. Add a description if you like to remind you of how the tool works in the future.

(e) Continue on to the second panel of the script wizard. Here, you will point ArcGIS to the
location of the actual Python script file on your hard drive.

(f) Continue on to the third (and final) panel of the script wizard. In this panel, you will set the
parameters of the script (see Description) as well as the properties of each parameter. These are
described in the Parameters section below.

(g) Once you’ve finished setting the parameters, select OK to finish creating the script. Your AWR
tool is now ready for use in geoprocessing tasks.

P a r a m e t e r s
It is extremely important that you enter parameters in the exact order outlined here. ArcGIS
relies on indexing each of the parameters in order to access the correct feature classes
and fields. This means that if even one parameter is out of place, the script will fail to run
or give an improper output. Moreover, each parameter requires that you explicitly state its
properties. Properties include:

(a) Type – Required, Optional, or Derived.

If a parameter is Required, it must be input by the user in order for the script to run. If
a parameter is Optional, it may be input by the user but isn’t necessary for the script to run. If a

(b) Intersect your Data Feature Class with your Areal Units Feature Class.

(c) Create a new field in your Intersect Feature Class and populate this field with the area value
of each of the intersected features (each of the features in your Intersect Feature Class).

(d) Create a new field in your Intersect Feature Class and populate this field by dividing the area
of your Intersect Feature Class features by the area of your Data Feature Class features. Place
this value in a field called AREA_RATIO. (e) Determine the Statistic Field(s) you are interested in
reaggregating. For x number of statistic fields, create x number of new fields to be populated.

(f) Multiply the values in each Statistic Field(s) by AREA_RATIO and store these values in the fields
created in step (e).

(g) Dissolve your Intersect Feature Class along the areal units defined in the input Dissolve Field.

As part of this Dissolve, perform a SUM summary statistic on each Statistic Field(s) to reaggregate
the data of interest along the new areal units.

http://parkerziegler.com/senior-research-programming-for-gis/
http://parkerziegler.com/senior-research-programming-for-gis/

Z i e g l e r ••••••••••••••••••••••••• A W R D o c u m e n t a t i o n

parameter is Derived, it is created somewhere in the course of the script but not input explicitly
by the user.

(b) Direction – Input, Output.

A parameter will have direction Input if it refers to an existing feature class or field that the script
will use. A parameter will have direction Output if it refers to a feature class or field that the script
will create in the course of processing.

(c) Multivalue – Yes, No.

A parameter will be set to Yes for MultiValue if it accepts multiple inputs (either fields or feature
classes). A parameter will be set to No for Multivalue if it only accepts one input. (d) Default – Set
the default value for the parameter.

Use this property when you want to set a default value for a parameter upon load of the tool
dialog box.

(e) Environment – Have the tool pull a particular property from the layer environments.

If you want the tool dialog box to pull this parameter from information stored in one of your
environments, set this parameter to that environment (i.e. workspace, processing extent, snap
raster).

(f) Filter – Select the data type(s) for the parameter.

When you want to limit a parameter to a particular data type, use this property to set that
data type. This will influence what feature classes or fields the tool will allow you to select when
choosing an input for this parameter from the tool.

(g) Obtained from – Connect this parameter with another parameter.

When a parameter is closely related to another parameter, use this property to establish the
connection. For example, if you have a parameter that refers to a field in a feature class, set the
Obtained from property to that feature class.

(h) Symbology – Import the symbology of another layer.

When you want to import the symbology from another layer or feature class, set this property to
that layer or feature class.

Below are the list of parameters and the associated properties of each required for the AWR
tool to run properly. Each entry is formatted as Parameter Name | Type – Properties.

Workspace | Workspace – Required, Input, No, <Null>, Workspace, Workspace, <Null>, <Null>
Data Feature Class | Feature Class – Required, Input, No, <Null>, <Null>, Polygon, <Null>, <Null>
Areal Unit Feature Class | Feature Class – Required, Input, No, <Null>, <Null>, Polygon, <Null>,
<Null>
Dissolve Field | Field – Required, Input, No, <Null>, <Null>, *All Numerical Field Types*, Areal Unit
Feature Class, <Null>
Intersect Feature Class | Feature Class – Required, Output, No, <Null>, <Null>, Polygon, <Null>,
<Null>
Statistic Field(s) | Field – Required, Input, Yes, <Null>, <Null>, *All Numerical Field Types*, Data
Feature Class, <Null>
Output feature Class | Field – Required, Output, No, <Null>, <Null>, Polygon, <Null>, <Null>

L i m i t a t i o n s
The areal-weighted reaggregation tool has several limitations. The following list outlines
several of these, such that future developers might tackle these problems:

Z i e g l e r ••••••••••••••••••••••••• A W R D o c u m e n t a t i o n

F i g u r e s

Figure 1. The

graphical user

interface (GUI) of

the Areal-Weighted

Reaggregation tool.

Notice that the order
of input parameters
corresponds exactly to
to the order in which we
defined each parameter
in the script wizard.
Interested developers
should feel free to design
a custom GUI interface.

Figure 2. Setting the parameters of

the Areal-Weighted Reaggregation

tool.

The third panel of the script wizard
(Parameters) allows you to set the
parameters and associated parameter
properties for the AWR tool. The top portion
allows you to set the display name and
data type. The bottom portion allows you
to set the Direction, MultiValue, Default,
Environment, Filter, Obtained from, and
Symbology properties. For a more detailed
description of all of these inputs, see the
Description and Parameters sections.

• The distribution of the data of interest is assumed to be uniform within each polygon feature in

the Data Feature Class. The spatial distribution of people, pollutants, crimes, or any other data
of interest is rarely (if ever) uniform, even across small extents. This tool relies on an assumption
of even distribution in order to allocate areally-weighted data counts to the new areal units. A
more precise algorithim would take into account the existing spatial heterogeneity of the data
of interest to generate a more precise reaggregation.
• The script generates a SUM summary statistic for the reaggregated areal features, but it does

not perform other summary statistics. When reaggregating data, we may want to know more
than the sum of the data of interest in our new areal units. An expansion of this tool would allow
users to set different statistical merge rules on different fields (i.e. Median, Standard Deviation).
• The script relies on calling existing ArcPy functions, which are not open to user alteration. A
future script should use an open source architecture to extend the tool’s useability.

